
Achilles Heel in Secure Boot:
Breaking RSA Authentication
and decrypted bitstream
recovery from Zynq-7000 SoC

Prasanna Ravi

Arpan Jati

Shivam Bhasin

Temasek Labs, NTU Singapore

14th March, 2024

Introduction

❑ The Zynq-7000 is widely deployed series of FPGA+SOC device
from Xilinx/AMD.

❑ Used for defense, aerospace and medical applications.

❑ We have identified critical security vulnerability in RSA
authentication process of Secure Boot of Zynq 7000 SoC.

❑ The flaw is present in FSBL (first stage boot loader), which can
be exploited by constructing a malicious boot image to boot
unauthorized applications.

❑ Once we get root access, we demonstrate a novel attack to
recover the encrypted bitstream and applications.

❑ We also extend our analysis to the critical BootROM.

❑ Introduction
❑ RSA Authentication Attack on Zynq-7000

❑ Background: Attack Model, Secure Boot and RSA Authentication
❑ Vulnerability in FSBL
❑ Attack Implementation: Using SD Card Switcher Board

❑ Starbleed on Zynq
❑ Introduction and Working
❑ Experimental Results

❑ Analyzing SD Card Data Transfer
❑ BootROM

❑ Possible BootROM Vulnerabilities
❑ PHT Transfer Analysis
❑ BootROM Data Transfer Analysis

❑ Conclusion and Future Works

Outline

Boot Image Header

Partition Header Table
(PHT)

First Stage Boot Loader
(FSBL)

Target Bitstream

- Unencrypted

- Encrypted

PHT Authenticate
Certificate

FSBL Authenticate
Certificate

Bitstream Authenticate
Certificate

SW Application

SW Application
Authenticate Certificate

Attack Model
❑ Attacker has access to the target Zynq-7000 device.

❑ He/She can obtain the valid secure boot image used in the target device.

❑ RSA Authentication mandatory for secure boot (RSA Enable eFUSE is
burnt).

eFUSE
(Ke)

BBRAM
(Kb)

PYNQ

Zynq-7000

SD card
Boot

RSA eFUSE
Hash(PPK)

Secure Boot of Zynq-7000 SoC

❑ Secure Boot Image is typically stored in a non-volatile memory
such as SD Card, NOR or NAND flash.

❑ It has information about:
❑ Different HW and SW components to be loaded on the Zynq

device.
❑ Where and how each and every partition has to be loaded

during the secure boot procedure.

❑ It contains multiple partitions:
❑ BootROM header (BIH)
❑ Partition Header Table (PHT)
❑ First Stage Boot Loader (FSBL)
❑ PL partition/s (bitstream)
❑ PS partition/s (Standalone Application or Operating System)

❑ Each partition can be AES encrypted, HMAC authenticated and
RSA authenticated

Typical Boot Image Structure

Secure Boot of Zynq-7000 SoC

❑ Secure Boot Image is typically stored in a non-volatile memory
such as SD Card, NOR or NAND flash.

❑ It has information about:
❑ Different HW and SW components to be loaded on the Zynq

device.
❑ Where and how each and every partition has to be loaded

during the secure boot procedure.

❑ It contains multiple partitions:
❑ BootROM header (BIH)
❑ Partition Header Table (PHT)
❑ First Stage Boot Loader (FSBL)
❑ PL partition/s (bitstream)
❑ PS partition/s (Standalone Application or Operating System)

❑ Each partition can be AES encrypted, HMAC authenticated and
RSA authenticated

Metadata
(Unencrypted)
(Non-Executable)

Typical Boot Image Structure

Secure Boot of Zynq-7000 SoC

❑ Secure Boot Image is typically stored in a non-volatile memory
such as SD Card, NOR or NAND flash.

❑ It has information about:
❑ Different HW and SW components to be loaded on the Zynq

device.
❑ Where and how each and every partition has to be loaded

during the secure boot procedure.

❑ It contains multiple partitions:
❑ BootROM header (BIH)
❑ Partition Header Table (PHT)
❑ First Stage Boot Loader (FSBL)
❑ PL partition/s (bitstream)
❑ PS partition/s (Standalone Application or Operating System)

❑ Each partition can be AES encrypted, HMAC authenticated and
RSA authenticated

Metadata
(Unencrypted)
(Non-Executable)

Executable Partitions
(Encrypted or
Unencrypted)
(PS or PL)

Typical Boot Image Structure

Secure Boot of Zynq-7000 SoC

❑ Secure Boot Image is typically stored in a non-volatile memory
such as SD Card, NOR or NAND flash.

❑ It contains multiple partitions:
❑ BootROM header (BIH)
❑ Partition Header Table (PHT)
❑ First Stage Boot Loader (FSBL)
❑ PL partition/s (bitstream)
❑ PS partition/s (Standalone Application or Operating System)

Boot Image (Authenticated)

Secure Boot of Zynq-7000 SoC

❑ Secure Boot Image is typically stored in a non-volatile memory
such as SD Card, NOR or NAND flash.

❑ It contains multiple partitions:
❑ BootROM header (BIH)
❑ Partition Header Table (PHT)
❑ First Stage Boot Loader (FSBL)
❑ PL partition/s (bitstream)
❑ PS partition/s (Standalone Application or Operating System)

Metadata
(Non-Executable)

Boot Image (Authenticated)

Secure Boot of Zynq-7000 SoC

❑ Secure Boot Image is typically stored in a non-volatile memory
such as SD Card, NOR or NAND flash.

❑ It contains multiple partitions:
❑ BootROM header (BIH)
❑ Partition Header Table (PHT)
❑ First Stage Boot Loader (FSBL)
❑ PL partition/s (bitstream)
❑ PS partition/s (Standalone Application or Operating System)

Metadata
(Non-Executable)

Executable Partitions
(PS or PL)

Boot Image (Authenticated)

Secure Boot of Zynq-7000 SoC

❑ Secure Boot Image is typically stored in a non-volatile memory
such as SD Card, NOR or NAND flash.

❑ It contains multiple partitions:
❑ BootROM header (BIH)
❑ Partition Header Table (PHT)
❑ First Stage Boot Loader (FSBL)
❑ PL partition/s (bitstream)
❑ PS partition/s (Standalone Application or Operating System)

Metadata
(Non-Executable)

Executable Partitions
(PS or PL)

Boot Image (Authenticated)

RSA Authentication in Zynq-7000 SoC
❑ Based on the well-known RSA-2048 signature scheme

❑ Authentication of each partition is done using two types of keys:
❑ Primary Key - Primary Public Key (PPK), Primary Secret Key (PSK)
❑ Secondary Keys - Secondary Public Key (SPK), Secondary Secret Key (SSK)

❑ Primary Key (PPK, PSK) is fixed for a given device - Hash of PPK is burnt into RSA eFUSE (One-Time Programmable)

❑ Secondary Key (SPK, SSK) is specific to each partition and can be different for each.

❑ Two-Step Authentication (For Each Partition):
❑ Primary Keys authenticate the Secondary Keys
❑ Secondary Keys authenticate the Partition

Boot Image Header (BIH): Intro
❑ Contains metadata about the boot image.

❑ Encryption Status of Boot Image
❑ Size of Boot Image
❑ Location of FSBL
❑ Load address of FSBL

❑ Upon reset, BootROM is the first piece of code executed

❑ BootROM Execution:
❑ CRC check of BootROM is carried out
❑ BIH is read from the SD card
❑ FSBL is read from SD card (Along with certificate)
❑ It is authenticated and decrypted based on the eFuse
❑ If successful, control transferred to FSBL

Read by BootROM

Partition Header Table (PHT)): Intro
❑ Provides metadata info. about each partition in boot image.

❑ Each partition has a 64-byte entry in the PHT, read by FSBL.

❑ Each entry contains information about the partition such as:
❑ Partition Encryption status (AES encrypted or not)
❑ Partition Authentication status (RSA authenticated or not)
❑ Partition Length etc.

❑ PHT also has a certificate which is verified by First Stage Boot
Loader (FSBL).

❑ PHT is central to the secure boot process.

❑ If we tamper PHT, we can load any application of our choice!!!

Read by FSBL

FSBL

❑

❑

❑

FSBL

❑ Gathers information about the individual partitions from the Partition Header Table.

❑

❑

FSBL

❑ Gathers information about the individual partitions from the Partition Header Table.

❑ All partitions are loaded into a temporary location in the DDR memory from the NVM memory.

❑

FSBL

❑ Gathers information about the individual partitions from the Partition Header Table.

❑ All partitions are loaded into a temporary location in the DDR memory from the NVM memory.

❑ They are then suitably decrypted and authenticated before being used for configuration
appropriately (Configure PL using PL bitstream and transfer control to last PS partition).

Overview of FSBL Operation

PS
(Running FSBL)

PL
PCAP

DDR Memory

AES/HMAC

Overview of FSBL Operation

PS
(Running FSBL)

PL
PCAP

DDR Memory

Step 1: FSBL Authenticates PHT certificate and proceeds (uses PHT) if successful

AES/HMAC

Overview of FSBL Operation

PS
(Running FSBL)

PL
PCAP

DDR Memory

Step 1: FSBL Authenticates PHT certificate and proceeds (uses PHT) if successful

AES/HMAC

Overview of FSBL Operation

PS
(Running FSBL)

PL
PCAP

DDR Memory

Step 1: FSBL Authenticates PHT certificate and proceeds (uses PHT) if successful

AES/HMAC

Overview of FSBL Operation

PS
(Running FSBL)

PL
PCAP

DDR Memory

Step 1: FSBL Authenticates PHT certificate and proceeds (uses PHT) if successful

AES/HMAC

Overview of FSBL Operation

PS
(Running FSBL)

PL
PCAP

DDR Memory

Step 1: FSBL Authenticates PHT certificate and proceeds (uses PHT) if successful

AES/HMAC

Overview of FSBL Operation

PS
(Running FSBL)

PL
PCAP

DDR Memory

AES/HMAC

Overview of FSBL Operation

PS
(Running FSBL)

PL
PCAP

DDR Memory

Step 2: Authenticate RSA signature of PL bitstream (if required)

AES/HMAC

Overview of FSBL Operation

PS
(Running FSBL)

PL
PCAP

DDR Memory

Step 2: Authenticate RSA signature of PL bitstream (if required)

AES/HMAC

Overview of FSBL Operation

PS
(Running FSBL)

PL
PCAP

DDR Memory

Step 2: Authenticate RSA signature of PL bitstream (if required)

AES/HMAC

Overview of FSBL Operation

PS
(Running FSBL)

PL
PCAP

DDR Memory

Step 2: Authenticate RSA signature of PL bitstream (if required)

AES/HMAC

Overview of FSBL Operation

PS
(Running FSBL)

PL
PCAP

DDR Memory

AES/HMAC

Overview of FSBL Operation

PS
(Running FSBL)

PL
PCAP

DDR Memory

Step 3: Decrypt and authenticate bitstream (if required)

AES/HMAC

Overview of FSBL Operation

PS
(Running FSBL)

PL
PCAP

DDR Memory

Step 3: Decrypt and authenticate bitstream (if required)

AES/HMAC

Overview of FSBL Operation

PS
(Running FSBL)

PL
PCAP

DDR Memory

Step 4: Authenticate RSA signature of PS application(if required)

AES/HMAC

Overview of FSBL Operation

PS
(Running FSBL)

PL
PCAP

DDR Memory

Step 4: Authenticate RSA signature of PS application(if required)

AES/HMAC

Overview of FSBL Operation

PS
(Running FSBL)

PL
PCAP

DDR Memory

Step 4: Authenticate RSA signature of PS application(if required)

AES/HMAC

Overview of FSBL Operation

PS
(Running FSBL)

PL
PCAP

DDR Memory

Step 4: Authenticate RSA signature of PS application(if required)

AES/HMAC

Overview of FSBL Operation

PS
(Running FSBL)

PL
PCAP

DDR Memory

Step 5: Decrypt and authenticate PS application (if required)

AES/HMAC

Overview of FSBL Operation

PS
(Running FSBL)

PL
PCAP

DDR Memory

Step 5: Decrypt and authenticate PS application (if required)

AES/HMAC

Overview of FSBL Operation

PS
(Running FSBL)

PL
PCAP

DDR Memory

Step 5: Decrypt and authenticate PS application (if required)

AES/HMAC

Overview of FSBL Operation

PS
(Running FSBL)

PL
PCAP

DDR Memory

Step 5: Decrypt and authenticate PS application (if required)

AES/HMAC

Overview of FSBL Operation

PS
(Running FSBL)

PL
PCAP

DDR Memory

AES/HMAC

PS
(Application)

Step 6: Hand over control to PS application

❑ Introduction
❑ RSA Authentication Attack on Zynq-7000

❑ Background: Attack Model, Secure Boot and RSA Authentication
❑ Vulnerability in FSBL
❑ Attack Implementation: Using SD Card Switcher Board

❑ Starbleed on Zynq
❑ Introduction and Working
❑ Experimental Results

❑ Analyzing SD Card Data Transfer
❑ BootROM

❑ Possible BootROM Vulnerabilities
❑ PHT Transfer Analysis
❑ BootROM Data Transfer Analysis

❑ Conclusion and Future Works

Outline

PHT Authentication by FSBL

Save PHT1 in GVAR

FSBL
Queries for the PHT from NVM

Receive PHT1 from NVM

Queries for PHT with AC from NVM

Receive PHT2 and AC from NVM

Validate AC and PHT2

Checks if RSA is Enabled,

If Yes,

If Success, Use PHT1 in
GVAR for SecureBoot

NVM
(SD Card)

PHT Authentication by FSBL

Save PHT1 in GVAR

FSBL
Queries for the PHT from NVM

Receive PHT1 from NVM

Queries for PHT with AC from NVM

Receive PHT2 and AC from NVM

Validate AC and PHT2

Checks if RSA is Enabled,

If Yes,

If Success, Use PHT1 in
GVAR for SecureBoot

NVM
(SD Card)

PHT Authentication by FSBL

Save PHT1 in GVAR

FSBL
Queries for the PHT from NVM

Receive PHT1 from NVM

Queries for PHT with AC from NVM

Receive PHT2 and AC from NVM

Validate AC and PHT2

Checks if RSA is Enabled,

If Yes,

If Success, Use PHT1 in
GVAR for SecureBoot

NVM
(SD Card)

First PHT Transfer (Unauth.) - PHT1

PHT Authentication by FSBL

Save PHT1 in GVAR

FSBL
Queries for the PHT from NVM

Receive PHT1 from NVM

Queries for PHT with AC from NVM

Receive PHT2 and AC from NVM

Validate AC and PHT2

Checks if RSA is Enabled,

If Yes,

If Success, Use PHT1 in
GVAR for SecureBoot

NVM
(SD Card)

First PHT Transfer (Unauth.) - PHT1

Second PHT Transfer (Auth.) - PHT2

Vulnerability: Redundant PHT Transfer

❑ Key Observation: FSBL authenticates PHT2, but uses PHT1 for secure boot

❑ Flaw: FSBL uses the unauthenticated PHT1 for secure boot.

❑ Attack Idea:
❑ Present Tampered PHT1 to device
❑ Present Valid PHT2 to device: PHT2 will be authenticated successfully by device
❑ Flaw: Tampered PHT1 will be used for secure boot
❑ Attack application mounted successfully on target!!

❑ Requirement: Manipulate data coming from SD card (PHT1 ≠ PHT2)

❑ Idea: Multiplexer to switch between two SD cards (SD Card 1 and SD Card 2)

❑ Attack Steps:
❑ SD Card 1 sends tampered PHT1
❑ Switch!!!
❑ SD Card 2 sends valid PHT2
❑ Device boots based on tampered PHT1
❑ Attack application loaded from SD Card 2

❑ Caveat: Switch should be done oblivious to the target Zynq device

❑ Solution: We designed an SD card switcher board

RSA Attack using SD card Multiplexer

❑ Introduction
❑ RSA Authentication Attack on Zynq-7000

❑ Background: Attack Model, Secure Boot and RSA Authentication
❑ Vulnerability in FSBL
❑ Attack Implementation: Using SD Card Switcher Board

❑ Starbleed on Zynq
❑ Introduction and Working
❑ Experimental Results

❑ Analyzing SD Card Data Transfer
❑ BootROM

❑ Possible BootROM Vulnerabilities
❑ PHT Transfer Analysis
❑ BootROM Data Transfer Analysis

❑ Conclusion and Future Works

Outline

SD Card Switcher Board:

SD Card 1

SD Card 2

SD Card Switcher Board:

Manual
Switch for

SD card swap

SD Card 1

SD Card 2

SD Card Switcher Board:

Manual
Switch for

SD card swap

SD Card 1

SD Card 2

Swap using
GPIO Trigger

Attack Setup:

SD Card 1

SD Card 2

Attack Setup:

Boot Image Header

Partition Header Table
(PHT)

First Stage Boot Loader
(FSBL)

Target Bitstream

PHT Authenticate
Certificate

FSBL Authenticate
Certificate

Bitstream Authenticate
Certificate

Attack Application

Boot Image Header

Partition Header Table
(PHT)

First Stage Boot Loader
(FSBL)

Target Bitstream

PHT Authenticate
Certificate

FSBL Authenticate
Certificate

Bitstream Authenticate
Certificate

Attack Application

Tampered PHT
(Corresponding to Attack

Application)

SD Card 1 SD Card 2

Original PHT

- Unencrypted

- Encrypted

- Tampered PHT

Attack (Expected):

Save PHT1 in GVAR

FSBL
(Zynq)

Queries for the PHT from SD1

Receive Tampered PHT as PHT1 from SD1

Queries for PHT2 with AC from SD2

Receive valid PHT2 and AC from SD2

Validate AC and PHT2

Checks if RSA is Enabled,
If Yes,

If Success, Use PHT1 in
GVAR for SecureBoot

SD Card
Switcher

SD Card 1
Initialize SD Card

SD Card 2

SWITCH From SD1 to SD2

Attack (Observed):

Save PHT1 in GVAR

FSBL
(Zynq)

Queries for the PHT from SD1

Receive Tampered PHT as PHT1 from SD1

Queries for PHT2 with AC from SD2

No Response!!!

Checks if RSA is Enabled,
If Yes,

SD Card
Switcher

SD Card 1
Initialize SD Card

SD Card 2

SWITCH From SD1 to SD2

Problem: SD Card 2 not able to respond!!!

As device is trying to address SD Card 1…

Attack:

Save PHT1 in GVAR

FSBL
(Zynq)

Queries for the PHT from SD1

Receive Tampered PHT as PHT1 from SD1

Queries for PHT2 with AC from SD2

Receive valid PHT2 and AC from SD2

Validate AC and PHT2

Checks if RSA is Enabled,
If Yes,

If Success, Use PHT1 in
GVAR for SecureBoot

SD Card
Switcher

SD Card 1
Initialize SD Card

SD Card 2

SWITCH From SD1 to SD2

Initialize SD Card

Single call to Init. SD Card

The Attack, practicality and CVE
❑ Attack requires to make a very minor modification in the FSBL: To Initialize the SD Card 2

❑ Very close to practical, but not yet fully practical
❑ Modification in FSBL not related to the identified vulnerability !!!

❑ However, our attack concretely demonstrates presence of flaw in FSBL.
❑ Xilinx confirmed its a serious issue and patched the vulnerability
❑ They also published a CVE 2022/23822 (Dated April 27, 2024)

❑ For real-world practical attack, we need to design specialized hardware (using ASIC/FPGA)

Save PHT1 in GVAR

FSBL
(Zynq)

Queries for the PHT from SD1

Receive Tampered PHT as PHT1 from SD1

Validate AC and PHT2

Checks if RSA is Enabled,
If Yes,

If Success, Use PHT1 in
GVAR for SecureBoot

SD Card
Switcher

SD Card 1
Initialize SD Card

SD Card 2

SWITCH From SD1 to SD2

FPGA/ASIC

(Data Manipulation)

Software Patch by Xilinx

Patch Note:
This patch fixes the secure
vulnerability of parition
header(PH)
authentication, in existing code
the actual buffer used and
authenticated are different, this
patch fixes the issue by
considering the actual used
buffer of partition header while
calculating the SHA2 digest

March 25, 2022

❑ Introduction
❑ RSA Authentication Attack on Zynq-7000

❑ Background: Attack Model, Secure Boot and RSA Authentication
❑ Vulnerability in FSBL
❑ Attack Implementation: Using SD Card Switcher Board

❑ Starbleed on Zynq
❑ Introduction and Working
❑ Experimental Results

❑ Analyzing SD Card Data Transfer
❑ BootROM

❑ Possible BootROM Vulnerabilities
❑ PHT Transfer Analysis
❑ BootROM Data Transfer Analysis

❑ Conclusion and Future Works

Outline

❑ The starbleed attack introduced by Ender et.al on a standalone FPGA works in the following manner:

Introduction to Starbleed on Zynq

❑ The starbleed attack introduced by Ender et.al on a standalone FPGA works in the following manner:

Introduction to Starbleed on Zynq

Configuration Interface
(JTAG, SelectMAP, SPI, BPI)

7-Series FPGA

WBSTAR

❑ The starbleed attack introduced by Ender et.al on a standalone FPGA works in the following manner:

Introduction to Starbleed on Zynq

Configuration Interface
(JTAG, SelectMAP, SPI, BPI)

7-Series FPGA

WBSTAR

Step 1: Push Starbleed
bitstream to FPGA

❑ The starbleed attack introduced by Ender et.al on a standalone FPGA works in the following manner:

Introduction to Starbleed on Zynq

Configuration Interface
(JTAG, SelectMAP, SPI, BPI)

7-Series FPGA

WBSTAR

Step 1: Push Starbleed
bitstream to FPGA

❑ The starbleed attack introduced by Ender et.al on a standalone FPGA works in the following manner:

Introduction to Starbleed on Zynq

Configuration Interface
(JTAG, SelectMAP, SPI, BPI)

7-Series FPGA

WBSTAR

❑ The starbleed attack introduced by Ender et.al on a standalone FPGA works in the following manner:

Introduction to Starbleed on Zynq

Configuration Interface
(JTAG, SelectMAP, SPI, BPI)

7-Series FPGA

WBSTAR

Step 2: Readback
WBSTAR register

❑ The starbleed attack introduced by Ender et.al on a standalone FPGA works in the following manner:

Introduction to Starbleed on Zynq

Configuration Interface
(JTAG, SelectMAP, SPI, BPI)

7-Series FPGA

WBSTAR

Step 2: Readback
WBSTAR register

Decrypted
word

❑ The starbleed attack introduced by Ender et.al on a standalone FPGA works in the following manner:

Introduction to Starbleed on Zynq

Configuration Interface
(JTAG, SelectMAP, SPI, BPI)

7-Series FPGA

WBSTAR

Step 2: Readback
WBSTAR register

Decrypted
word

PL
PS

(Attack App)
PCAP

Zynq-7000 SoC

Securely Booted Zynq
(Mandatory)

Attack Methodology: Starbleed on Zynq

Attack Methodology: Starbleed on Zynq

PS PL
PCAP

Attack Methodology: Starbleed on Zynq

PS PL
PCAP

Malicious
Attack
Boot

Image

Attack Methodology: Starbleed on Zynq

PS PL
PCAP

Malicious
Attack
Boot

Image

Attack Methodology: Starbleed on Zynq

PS PL
PCAP

Malicious
Attack
Boot

Image

Attack Methodology: Starbleed on Zynq

PS PL
PCAP

Malicious
Attack
Boot

Image

Secure boot OK!!

Attack Methodology: Starbleed on Zynq

PS PL
PCAP

Malicious
Attack
Boot

Image

Secure boot OK!!

Attack Methodology: Starbleed on Zynq

PS PL
PCAP

Malicious
Attack
Boot

Image

Secure boot OK!!

Attack Methodology: Starbleed on Zynq

PS PL
PCAP

Malicious
Attack
Boot

Image

Secure boot OK!!

WBSTAR

Attack Methodology: Starbleed on Zynq

PS PL
PCAP

Malicious
Attack
Boot

Image

Secure boot OK!!

WBSTAR

❑ Main Challenges:

Attack Methodology: Starbleed on Zynq

PS PL
PCAP

Malicious
Attack
Boot

Image

Secure boot OK!!

WBSTAR

❑ Main Challenges:
❑ Implementing a working Starbleed attack on standalone FPGA

Attack Methodology: Starbleed on Zynq

PS PL
PCAP

Malicious
Attack
Boot

Image

Secure boot OK!!

WBSTAR

❑ Main Challenges:
❑ Implementing a working Starbleed attack on standalone FPGA

❑ Construction of secure attack boot image (without knowledge of key)

Attack Methodology: Starbleed on Zynq

PS PL
PCAP

Malicious
Attack
Boot

Image

Secure boot OK!!

WBSTAR

❑ Main Challenges:
❑ Implementing a working Starbleed attack on standalone FPGA

❑ Construction of secure attack boot image (without knowledge of key)

❑ Development of attack application to carry out the starbleed attack (PCAP interface)

Attack Methodology: Starbleed on Zynq

PS PL
PCAP

Malicious
Attack
Boot

Image

Secure boot OK!!

WBSTAR

❑ Main Challenges:
❑ Implementing a working Starbleed attack on standalone FPGA

❑ Construction of secure attack boot image (without knowledge of key)

❑ Development of attack application to carry out the starbleed attack (PCAP interface)

Attack Methodology: Starbleed on Zynq

PS PL
PCAP

Malicious
Attack
Boot

Image

Secure boot OK!!

WBSTAR

❑ Main Challenges:
❑ Implementing a working Starbleed attack on standalone FPGA

❑ Construction of secure attack boot image (without knowledge of key)

❑ Development of attack application to carry out the starbleed attack (PCAP interface)

Attack Methodology: Starbleed on Zynq

PS PL
PCAP

Malicious
Attack
Boot

Image

Secure boot OK!!

WBSTAR

❑ Main Challenges:
❑ Implementing a working Starbleed attack on standalone FPGA

❑ Construction of secure attack boot image (without knowledge of key)

❑ Development of attack application to carry out the starbleed attack (PCAP interface)

Starbleed Bitstream Creation: Tool

• The tool works by adding faults
in the required places (done
manually).

• Removing extra superfluous code
(makes the attack much faster)

Starbleed Bitstream Creation: Tool

Building Secure Boot Image from Victim Boot Image

Building Attack Application:

❑ Main Tasks:
❑ Task 1: Fetch starbleed bitstreams from DDR memory and push them to PL through PCAP interface.
❑ Task 2: Perform readback of the WBSTAR register through the PCAP interface.

❑ We utilized Xilinx Software Development Kit (XSDK) from Xilinx to develop the attack application running on
the PS.

❑ We are able to successfully use the PCAP interface to configure PL with valid bitstreams.

Experimental Observations: tampered PL

PS PLPCAP

Secure
Attack
Boot

Image

❑

❑

❑

Experimental Observations: tampered PL

PS PLPCAP

Secure
Attack
Boot

Image

❑

❑

❑

Experimental Observations: tampered PL

PS PLPCAP

Secure
Attack
Boot

Image

❑

❑

❑

Experimental Observations: tampered PL

PS PLPCAP

Secure
Attack
Boot

Image

Secure boot OK!!

❑

❑

❑

Experimental Observations: tampered PL

PS PLPCAP

Secure
Attack
Boot

Image

Secure boot OK!!

❑

❑

❑

Experimental Observations: tampered PL

PS PLPCAP

Secure
Attack
Boot

Image

Secure boot OK!!

❑

❑

❑

Experimental Observations: tampered PL

PS PLPCAP

Secure
Attack
Boot

Image

Secure boot OK!!

WBSTAR

❑

❑

❑

Experimental Observations: tampered PL

PS PLPCAP

Secure
Attack
Boot

Image

Secure boot OK!!

WBSTAR

PS detects HMAC error!!!

❑

❑

❑

Experimental Observations: tampered PL

PS PLPCAP

Secure
Attack
Boot

Image

Secure boot OK!!

WBSTAR

PS detects HMAC error!!!

No Readback

❑

❑

❑

Experimental Observations: tampered PL

PS PLPCAP

Secure
Attack
Boot

Image

Secure boot OK!!

WBSTAR

PS detects HMAC error!!!

No Readback

❑ Readback through PCAP is only possible when the PL is fully configured with a valid bitstream.

❑

❑

Experimental Observations: tampered PL

PS PLPCAP

Secure
Attack
Boot

Image

Secure boot OK!!

WBSTAR

PS detects HMAC error!!!

No Readback

❑ Readback through PCAP is only possible when the PL is fully configured with a valid bitstream.

❑ So, we attempted to use the JTAG interface to perform readback.

❑

Experimental Observations: tampered PL

PS PLPCAP

Secure
Attack
Boot

Image

Secure boot OK!!

WBSTAR

PS detects HMAC error!!!

No Readback

❑ Readback through PCAP is only possible when the PL is fully configured with a valid bitstream.

❑ So, we attempted to use the JTAG interface to perform readback.

❑ We were able to read the correct decrypted word in the WBSTAR register through JTAG interface.

JTAG

❑ JTAG is an external interface which might not be exposed on a deployed device.

❑ There is a fuse control bit that can permanently disable JTAG: XSK_EFUSEPK_DISABLE_JTAG_CHAIN

❑

❑

Can we rely on JTAG for Starbleed Attack

❑ JTAG is an external interface which might not be exposed on a deployed device.

❑ There is a fuse control bit that can permanently disable JTAG: XSK_EFUSEPK_DISABLE_JTAG_CHAIN

❑ Can we perform the attack using just the PCAP interface (without relying on external interface)?

❑

Can we rely on JTAG for Starbleed Attack

❑ JTAG is an external interface which might not be exposed on a deployed device.

❑ There is a fuse control bit that can permanently disable JTAG: XSK_EFUSEPK_DISABLE_JTAG_CHAIN

❑ Can we perform the attack using just the PCAP interface (without relying on external interface)?

❑ We identified a “hack” to perform the starbleed attack only using the PCAP interface.

Can we rely on JTAG for Starbleed Attack

Starbleed Attack (using PCAP)

PS
(Attack App) PCAP

Secure
Attack
Boot

Image

Secure boot OK!!

❑ Limitation: PCAP readback possible only when PL is properly configured (PL Done High)

❑

DONE

PL

WBSTAR

HMAC_ERR

Starbleed Attack (using PCAP)

PS
(Attack App) PCAP

Secure
Attack
Boot

Image

Secure boot OK!!

❑ Limitation: PCAP readback possible only when PL is properly configured (PL Done High)

❑ Attack Steps:

DONE

PL

WBSTAR

HMAC_ERR

Starbleed Attack (using PCAP)

PS
(Attack App) PCAP

Secure
Attack
Boot

Image

Secure boot OK!!

❑ Limitation: PCAP readback possible only when PL is properly configured (PL Done High)

❑ Attack Steps:
Step-1: We push a valid bitstream (encrypted bitstream in victim image) and fully configure the PL (PL DONE high)

DONE

PL

WBSTAR

HMAC_ERR

Starbleed Attack (using PCAP)

PS
(Attack App) PCAP

Secure
Attack
Boot

Image

Secure boot OK!!

❑ Limitation: PCAP readback possible only when PL is properly configured (PL Done High)

❑ Attack Steps:
Step-1: We push a valid bitstream (encrypted bitstream in victim image) and fully configure the PL (PL DONE high)

Valid bitstream

DONE

PL

WBSTAR

HMAC_ERR

Starbleed Attack (using PCAP)

PS
(Attack App) PCAP

Secure
Attack
Boot

Image

Secure boot OK!!

❑ Limitation: PCAP readback possible only when PL is properly configured (PL Done High)

❑ Attack Steps:
Step-1: We push a valid bitstream (encrypted bitstream in victim image) and fully configure the PL (PL DONE high)

DONE

PL

WBSTAR

HMAC_ERR

Starbleed Attack (using PCAP)

PS
(Attack App) PCAP

Secure
Attack
Boot

Image

Secure boot OK!!

❑ Limitation: PCAP readback possible only when PL is properly configured (PL Done High)

❑ Attack Steps:
Step-1: We push a valid bitstream (encrypted bitstream in victim image) and fully configure the PL (PL DONE high)
Step-2: Without initializing the PL, we send in the Starbleed bitstream (not recommended)

DONE

PL

WBSTAR

HMAC_ERR

Starbleed Attack (using PCAP)

PS
(Attack App) PCAP

Secure
Attack
Boot

Image

Secure boot OK!!

❑ Limitation: PCAP readback possible only when PL is properly configured (PL Done High)

❑ Attack Steps:
Step-1: We push a valid bitstream (encrypted bitstream in victim image) and fully configure the PL (PL DONE high)
Step-2: Without initializing the PL, we send in the Starbleed bitstream (not recommended)

Init. PL DONE

PL

WBSTAR

HMAC_ERR

Starbleed Attack (using PCAP)

PS
(Attack App) PCAP

Secure
Attack
Boot

Image

Secure boot OK!!

❑ Limitation: PCAP readback possible only when PL is properly configured (PL Done High)

❑ Attack Steps:
Step-1: We push a valid bitstream (encrypted bitstream in victim image) and fully configure the PL (PL DONE high)
Step-2: Without initializing the PL, we send in the Starbleed bitstream (not recommended)

Init. PL DONE

PL

WBSTAR

HMAC_ERR

Starbleed Attack (using PCAP)

PS
(Attack App) PCAP

Secure
Attack
Boot

Image

Secure boot OK!!

❑ Limitation: PCAP readback possible only when PL is properly configured (PL Done High)

❑ Attack Steps:
Step-1: We push a valid bitstream (encrypted bitstream in victim image) and fully configure the PL (PL DONE high)
Step-2: Without initializing the PL, we send in the Starbleed bitstream (not recommended)

Init. PL DONE

PL

WBSTAR

HMAC_ERR

Starbleed Attack (using PCAP)

PS
(Attack App) PCAP

Secure
Attack
Boot

Image

Secure boot OK!!

❑ Limitation: PCAP readback possible only when PL is properly configured (PL Done High)

❑ Attack Steps:
Step-1: We push a valid bitstream (encrypted bitstream in victim image) and fully configure the PL (PL DONE high)
Step-2: Without initializing the PL, we send in the Starbleed bitstream (not recommended)

Init. PL

Starbleed bitstream

DONE

PL

WBSTAR

HMAC_ERR

Starbleed Attack (using PCAP)

PS
(Attack App) PCAP

Secure
Attack
Boot

Image

Secure boot OK!!

❑ Limitation: PCAP readback possible only when PL is properly configured (PL Done High)

❑ Attack Steps:
Step-1: We push a valid bitstream (encrypted bitstream in victim image) and fully configure the PL (PL DONE high)
Step-2: Without initializing the PL, we send in the Starbleed bitstream (not recommended)

Init. PL DONE

PL

WBSTAR

HMAC_ERR

Starbleed Attack (using PCAP)

PS
(Attack App) PCAP

Secure
Attack
Boot

Image

Secure boot OK!!

❑ Limitation: PCAP readback possible only when PL is properly configured (PL Done High)

❑ Attack Steps:
Step-1: We push a valid bitstream (encrypted bitstream in victim image) and fully configure the PL (PL DONE high)
Step-2: Without initializing the PL, we send in the Starbleed bitstream (not recommended)

Init. PL DONE

PL

WBSTAR

HMAC_ERR

Starbleed Attack (using PCAP)

PS
(Attack App) PCAP

Secure
Attack
Boot

Image

Secure boot OK!!

❑ Limitation: PCAP readback possible only when PL is properly configured (PL Done High)

❑ Attack Steps:
Step-1: We push a valid bitstream (encrypted bitstream in victim image) and fully configure the PL (PL DONE high)
Step-2: Without initializing the PL, we send in the Starbleed bitstream (not recommended)

 - We then observe an HMAC error and the DONE LED is still high (FPGA still fully configured)

Init. PL DONE

PL

WBSTAR

HMAC_ERR

Starbleed Attack (using PCAP)

PS
(Attack App) PCAP

Secure
Attack
Boot

Image

Secure boot OK!!

❑ Limitation: PCAP readback possible only when PL is properly configured (PL Done High)

❑ Attack Steps:
Step-1: We push a valid bitstream (encrypted bitstream in victim image) and fully configure the PL (PL DONE high)
Step-2: Without initializing the PL, we send in the Starbleed bitstream (not recommended)

 - We then observe an HMAC error and the DONE LED is still high (FPGA still fully configured)
Step-3: We read the WBSTAR register through PCAP interface - We get the decrypted codeword!!!

Init. PL DONE

PL

WBSTAR

HMAC_ERR

Starbleed Attack (using PCAP)

PS
(Attack App) PCAP

Secure
Attack
Boot

Image

Secure boot OK!!

❑ Limitation: PCAP readback possible only when PL is properly configured (PL Done High)

❑ Attack Steps:
Step-1: We push a valid bitstream (encrypted bitstream in victim image) and fully configure the PL (PL DONE high)
Step-2: Without initializing the PL, we send in the Starbleed bitstream (not recommended)

 - We then observe an HMAC error and the DONE LED is still high (FPGA still fully configured)
Step-3: We read the WBSTAR register through PCAP interface - We get the decrypted codeword!!!

Init. PL DONE

PL

WBSTAR

HMAC_ERR

Starbleed Attack (using PCAP)

PS
(Attack App) PCAP

Secure
Attack
Boot

Image

Secure boot OK!!

❑ Limitation: PCAP readback possible only when PL is properly configured (PL Done High)

❑ Attack Steps:
Step-1: We push a valid bitstream (encrypted bitstream in victim image) and fully configure the PL (PL DONE high)
Step-2: Without initializing the PL, we send in the Starbleed bitstream (not recommended)

 - We then observe an HMAC error and the DONE LED is still high (FPGA still fully configured)
Step-3: We read the WBSTAR register through PCAP interface - We get the decrypted codeword!!!
Step-4: PCAP goes into unknown state – unresponsive - requires a POR reset

Init. PL DONE

PL

WBSTAR

HMAC_ERR

❑ Starbleed bitstreams need to be created adaptively (based on knowledge of previously retrieved words)

❑ Since we have control of attack application, we use UART interface to communicate with target

❑ New bitstreams are fed to the Zynq device through the UART interface (then used by PS for the attack)

❑ We have an Arduino based relay to perform automatic POR reset of the target

Automating Starbleed Attack (using PCAP)

❑ Introduction
❑ RSA Authentication Attack on Zynq-7000

❑ Background: Attack Model, Secure Boot and RSA Authentication
❑ Vulnerability in FSBL
❑ Attack Implementation: Using SD Card Switcher Board

❑ Starbleed on Zynq
❑ Introduction and Working
❑ Experimental Results

❑ Analyzing SD Card Data Transfer
❑ BootROM

❑ Possible BootROM Vulnerabilities
❑ PHT Transfer Analysis
❑ BootROM Data Transfer Analysis

❑ Conclusion and Future Works

Outline

❑ We are able to retrieve a single decrypted bitstream word in approx. 1 second.

❑ An encrypted bitstream of size 3.85 MB can be retrieved in 46 days.

❑ Attacker needs access to the target device for this duration.

❑ Maximum time spent in POR reset (target device goes through secure boot for every bitstream word)

Starbleed on Zynq: Experimental Results

❑ Faster bitstream recovery is possible with dedicated PCB and faster relay

❑ Can have multiple target devices to speed-up the attack as well.

❑ Main Bottleneck: POR reset requirement (when using secure boot)

❑ Can we perform attack without requiring POR reset?

❑ Once we recover the HMAC key, we can create authenticated starbleed bitstreams (No HMAC error)

❑ PCAP could potentially be retained in a working state

❑ Complete bitstream recovery might be possible without POR reset for every recovered word

❑ Some sound strategies may not work because of some unknown reason as well.

Optimizing Starbleed Attack on Zynq

Attack Demo

4/19/2024 40

Attack Demo

4/19/2024 40

❑ Introduction
❑ RSA Authentication Attack on Zynq-7000

❑ Background: Attack Model, Secure Boot and RSA Authentication
❑ Vulnerability in FSBL
❑ Attack Implementation: Using SD Card Switcher Board

❑ Starbleed on Zynq
❑ Introduction and Working
❑ Experimental Results

❑ Analyzing SD Card Data Transfer
❑ BootROM

❑ Possible BootROM Vulnerabilities
❑ PHT Transfer Analysis
❑ BootROM Data Transfer Analysis

❑ Conclusion and Future Works

Outline

SD Card Interface: Background
❑ 9 wire interface:

❑ CMD (Command)
❑ CLK (Clock)
❑ DAT0-DAT3 (4 data lines)

❑ Commands and Response are exchanged over CMD line
❑ In the form of Packets

❑ SD card contains a few information registers:
❑ Control and Status of SD Card interface

❑ Reading/Writing in blocks of 512 bytes

❑ Important commands for read:
❑ CMD17 - To read single block
❑ CMD18 - To read multiple blocks

SD Card Interface
CMD17:

CMD18:

SD Card Interface
CMD17:

CMD18:

Idea:

SD Card Interface
CMD17:

CMD18:

Idea:
❑ Monitor the number of CMD17, CMD18 calls

SD Card Interface
CMD17:

CMD18:

Idea:
❑ Monitor the number of CMD17, CMD18 calls
❑ Gives us information about data blocks
read by BootROM/FSBL over SD interface…

SD Card Interface
CMD17:

CMD18:

Idea:
❑ Monitor the number of CMD17, CMD18 calls
❑ Gives us information about data blocks
read by BootROM/FSBL over SD interface…

Use Logic Analyzer to analyze SD Card
Interface

❑ DS Logic Plus Analyzer:
❑ 400 MHz (16 channels)
❑ SDIO protocol decoder

❑ Analysis of the following signals:
❑ CMD
❑ CLK
❑ DAT3 (Can be any other data line)

Logic Analyzer for SD Card Interface

❑ Introduction
❑ RSA Authentication Attack on Zynq-7000

❑ Background: Attack Model, Secure Boot and RSA Authentication
❑ Vulnerability in FSBL
❑ Attack Implementation: Using SD Card Switcher Board

❑ Starbleed on Zynq
❑ Introduction and Working
❑ Experimental Results

❑ Analyzing SD Card Data Transfer
❑ BootROM

❑ Possible BootROM Vulnerabilities
❑ PHT Transfer Analysis
❑ BootROM Data Transfer Analysis

❑ Conclusion and Future Works

Outline

Possible BootROM Vulnerabilities
❑ What about BootROM?

❑ RSA Authentication, Decryption of FSBL (SD Card)
❑ Any vulnerabilities in BootROM?

❑ Challenges:
❑ BootROM code is not available (hard-coded on chip)
❑ BootROM code cannot be changed

❑ In this work:
❑ Black Box Vulnerability analysis of BootROM
❑ Updates on our previous attack on FSBL

❑ Probe the SD Card Interface between SoC and
SD Card

Analysis of SD Card Interface during Bootup

Read BIH
Boot Image Header

Read FSBL
(Certificate)

Read PHT
(Certificate)

Read Bitstream
(Certificate)

Read Application
(Certificate)

BootROM

FSBL

Full Boot up:

CMD

CLK

DAT3

❑ How to differentiate between BootROM transfers and FSBL transfers?
❑ Observation: FSBL is controllable software
❑ Idea: Insert varying delays within the FSBL software and observe how the transfers are perturbed.

❑ Insert delay just after start of FSBL
❑ Insert delay after PHT transfer
❑ Insert delays after bitstream transfer

Full Boot up:

InitSD
(BootROM)

Retrieval
of FSBL

(BootROM)

InitSD
Interface
And PHT
Retrieval

(FSBL)

Retrieval of
Bitstream

(FSBL)

Retrieval of
SW Application

(FSBL)

CMD

CLK

DAT3

BootROM Execution FSBL Execution

Full Boot up:

CMD
CLK
DAT3

CMD18 from Zynq Device (Host)
(Read Multiple Blocks at Address: 0x54e56)

Response from SD Card
(Acknowledgement)

❑ Introduction
❑ RSA Authentication Attack on Zynq-7000

❑ Background: Attack Model, Secure Boot and RSA Authentication
❑ Vulnerability in FSBL
❑ Attack Implementation: Using SD Card Switcher Board

❑ Starbleed on Zynq
❑ Introduction and Working
❑ Experimental Results

❑ Analyzing SD Card Data Transfer
❑ BootROM

❑ Possible BootROM Vulnerabilities
❑ PHT Transfer Analysis
❑ BootROM Data Transfer Analysis

❑ Conclusion and Future Works

Outline

PHT Transfer by FSBL

InitSD
Interface

Retrieval of
PHT1

(2 blocks)

CMD
CLK

DAT3

FSBL Execution

❑ We know there are two PHT transfers (PHT1 and PHT2)

❑ To identify PHT1: Put an infinite while loop after PHT1

PHT Transfer by FSBL
❑ We know there are two PHT transfers (PHT1 and PHT2)

❑ To identify PHT2: Put an infinite while loop after PHT2

❑ PHT1 transfer: 445 msecs (from first clock edge on CMD line)
❑ PHT2 transfer: 448.5 msecs (from first clock edge on CMD line)

InitSD
Interface

Retrieval of
PHT1

(2 blocks)

Retrieval of
PHT2 with AC

(7 blocks)

CMD
CLK

DAT3

FSBL Execution 3 msecs (Time to Switch)

❑ Introduction
❑ RSA Authentication Attack on Zynq-7000

❑ Background: Attack Model, Secure Boot and RSA Authentication
❑ Vulnerability in FSBL
❑ Attack Implementation: Using SD Card Switcher Board

❑ Starbleed on Zynq
❑ Introduction and Working
❑ Experimental Results

❑ Analyzing SD Card Data Transfer
❑ BootROM

❑ Possible BootROM Vulnerabilities
❑ PHT Transfer Analysis
❑ BootROM Data Transfer Analysis

❑ Conclusion and Future Works

Outline

Analyzing BootROM Behaviour
❑ Area of Interest: data blocks transferred during FSBL authentication

❑ We consider three cases:
❑ Non-secure Boot (Nsec)
❑ Secure with only encryption (Sec_Encrypt)
❑ Secure with both encryption and authentication (Sec_Auth_Encrypt)

BootROM Behaviour: Nsec Image
❑ Read unencrypted FSBL
❑ 114.5 KB = 225 Blocks

BootROM Behaviour: Nsec Image
❑ Read unencrypted FSBL
❑ 114.5 KB = 225 Blocks

BootROM Execution FSBL Execution

Retrieval of Unencrypted FSBL
(225 Blocks)

CMD
CLK
DAT3

BootROM Behaviour: Sec_Encrypt Image
❑ Read encrypted FSBL
❑ 115.5 KB = 227 Blocks

BootROM Behaviour: Sec_Encrypt Image
❑ Read encrypted FSBL
❑ 115.5 KB = 227 Blocks

BootROM Execution FSBL Execution

Retrieval of Encrypted FSBL
(227 Blocks)

CMD
CLK
DAT3

BootROM Behaviour: Sec_Auth_Encrypt Image
❑ Read encrypted FSBL + Certificate
❑ 116.8 KB = 230 Blocks

❑

BootROM Behaviour: Sec_Auth_Encrypt Image
❑ Read encrypted FSBL + Certificate
❑ 116.8 KB = 230 Blocks

BootROM Execution FSBL Execution

Retrieval of Encrypted FSBL + AC
(230 Blocks)

CMD
CLK
DAT3

❑

BootROM Behaviour: Sec_Auth_Encrypt Image
❑ Read encrypted FSBL + Certificate
❑ 116.8 KB = 230 Blocks

BootROM Execution FSBL Execution

Retrieval of Encrypted FSBL + AC
(230 Blocks)

CMD
CLK
DAT3

❑ Inference: There are no duplicate data transfers of the FSBL data duing BootROM execution…

Conclusion:
❑ We have identified a critical security flaw in the Zynq-7000 FSBL software, due to mishandling of the PHT

data.

❑ We experimentally validated exploitation of the flaw, using an SD card switcher board.

❑ A very minor modification to the FSBL is required to demonstrate successful attack with existing
hardware.

❑ For real world attack, we need a specialized hardware between the target and the SD card switcher
board.

❑ Xilinx/AMD has acknowledged the presence of the critical flaw to bypass RSA Authentication.

❑ A software patch for the FSBL is provided Xilinx to remove the vulnerability.

❑ But all unpatched devices in the wild face recovery of unencrypted bitstream and application
files.

❑ We performed the first vulnerability analysis of the BootROM software of Zynq-7000 SoC

❑ We used a logic analyzer to probe the SD card interface during FSBL and BootROM execution

❑ BootROM Analysis: showed that there is no duplicate transfer of FSBL during BootROM execution

Future Works:
❑ After patching the PHT authentication vulnerability, are more attacks still possible??

❑ Fault Vulnerability Analysis of the FSBL, BootROM

Thank you!!!

	Slide 1: Achilles Heel in Secure Boot: Breaking RSA Authentication and decrypted bitstream recovery from Zynq-7000 SoC
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Secure Boot of Zynq-7000 SoC
	Slide 6: Secure Boot of Zynq-7000 SoC
	Slide 7: Secure Boot of Zynq-7000 SoC
	Slide 8: Secure Boot of Zynq-7000 SoC
	Slide 9: Secure Boot of Zynq-7000 SoC
	Slide 10: Secure Boot of Zynq-7000 SoC
	Slide 11: Secure Boot of Zynq-7000 SoC
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: Software Patch by Xilinx
	Slide 60
	Slide 61: Introduction to Starbleed on Zynq
	Slide 62: Introduction to Starbleed on Zynq
	Slide 63: Introduction to Starbleed on Zynq
	Slide 64: Introduction to Starbleed on Zynq
	Slide 65: Introduction to Starbleed on Zynq
	Slide 66: Introduction to Starbleed on Zynq
	Slide 67: Introduction to Starbleed on Zynq
	Slide 68: Introduction to Starbleed on Zynq
	Slide 69: Attack Methodology: Starbleed on Zynq
	Slide 70: Attack Methodology: Starbleed on Zynq
	Slide 71: Attack Methodology: Starbleed on Zynq
	Slide 72: Attack Methodology: Starbleed on Zynq
	Slide 73: Attack Methodology: Starbleed on Zynq
	Slide 74: Attack Methodology: Starbleed on Zynq
	Slide 75: Attack Methodology: Starbleed on Zynq
	Slide 76: Attack Methodology: Starbleed on Zynq
	Slide 77: Attack Methodology: Starbleed on Zynq
	Slide 78: Attack Methodology: Starbleed on Zynq
	Slide 79: Attack Methodology: Starbleed on Zynq
	Slide 80: Attack Methodology: Starbleed on Zynq
	Slide 81: Attack Methodology: Starbleed on Zynq
	Slide 82: Attack Methodology: Starbleed on Zynq
	Slide 83: Attack Methodology: Starbleed on Zynq
	Slide 84: Attack Methodology: Starbleed on Zynq
	Slide 85: Starbleed Bitstream Creation: Tool
	Slide 86: Starbleed Bitstream Creation: Tool
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124: Attack Demo
	Slide 125: Attack Demo
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135: Possible BootROM Vulnerabilities
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154

