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Introduction

❑ The Zynq-7000 is widely deployed series of FPGA+SOC device 
from Xilinx/AMD.

❑ Used for defense, aerospace and medical applications. 

❑ We have identified critical security vulnerability in RSA 
authentication process of Secure Boot of Zynq 7000 SoC.

❑ The flaw is present in FSBL (first stage boot loader), which can 
be exploited by constructing a malicious boot image to boot 
unauthorized applications.

❑ Once we get root access, we demonstrate a novel attack to 
recover the encrypted bitstream and applications. 

❑ We also extend our analysis to the critical BootROM.
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Attack Model
❑ Attacker has access to the target Zynq-7000 device.

❑ He/She can obtain the valid secure boot image used in the target device.

❑ RSA Authentication mandatory for secure boot (RSA Enable eFUSE is 
burnt).
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Secure Boot of Zynq-7000 SoC

❑ Secure Boot Image is typically stored in a non-volatile memory 
such as SD Card, NOR or NAND flash.

❑ It has information about:
❑ Different HW and SW components to be loaded on the Zynq 

device.
❑ Where and how each and every partition has to be loaded 

during the secure boot procedure.

❑ It contains multiple partitions:
❑ BootROM header (BIH)
❑ Partition Header Table (PHT)
❑ First Stage Boot Loader (FSBL)
❑ PL partition/s (bitstream)
❑ PS partition/s (Standalone Application or Operating System)

❑ Each partition can be AES encrypted, HMAC authenticated and 
RSA authenticated

Typical Boot Image Structure
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RSA Authentication in Zynq-7000 SoC
❑ Based on the well-known RSA-2048 signature scheme

❑ Authentication of each partition is done using two types of keys:
❑ Primary Key - Primary Public Key (PPK), Primary Secret Key (PSK)
❑ Secondary Keys  - Secondary Public Key (SPK), Secondary Secret Key (SSK)

❑ Primary Key (PPK, PSK) is fixed for a given device - Hash of PPK is burnt into RSA eFUSE (One-Time Programmable)

❑ Secondary Key (SPK, SSK) is specific to each partition and can be different for each.

❑ Two-Step Authentication (For Each Partition):
❑ Primary Keys authenticate the Secondary Keys
❑ Secondary Keys authenticate the Partition



Boot Image Header (BIH): Intro
❑ Contains metadata about the boot image.

❑ Encryption Status of Boot Image
❑ Size of Boot Image
❑ Location of FSBL
❑ Load address of FSBL

❑ Upon reset, BootROM is the first piece of code executed

❑ BootROM Execution:
❑ CRC check of BootROM is carried out
❑ BIH is read from the SD card 
❑ FSBL is read from SD card (Along with certificate)
❑ It is authenticated and decrypted based on the eFuse
❑ If successful, control transferred to FSBL

Read by BootROM



Partition Header Table (PHT) ): Intro
❑ Provides metadata info. about each partition in boot image.

❑ Each partition has a 64-byte entry in the PHT, read by FSBL.

❑ Each entry contains information about the partition such as:
❑ Partition Encryption status (AES encrypted or not)
❑ Partition Authentication status (RSA authenticated or not)
❑ Partition Length etc.

❑ PHT also has a certificate which is verified by First Stage Boot 
Loader (FSBL).

❑ PHT is central to the secure boot process.

❑ If we tamper PHT, we can load any application of our choice!!!

Read by FSBL



FSBL

❑

❑

❑



FSBL

❑ Gathers information about the individual partitions from the Partition Header Table.

❑

❑



FSBL

❑ Gathers information about the individual partitions from the Partition Header Table.

❑ All partitions are loaded into a temporary location in the DDR memory from the NVM memory.

❑



FSBL

❑ Gathers information about the individual partitions from the Partition Header Table.

❑ All partitions are loaded into a temporary location in the DDR memory from the NVM memory.

❑ They are then suitably decrypted and authenticated before being used for configuration 
appropriately (Configure PL using PL bitstream and transfer control to last PS partition).
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Overview of FSBL Operation
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(Application)

Step 6: Hand over control to PS application
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PHT Authentication by FSBL

Save PHT1 in GVAR

FSBL
Queries for the PHT from NVM

Receive PHT1 from NVM

Queries for PHT with AC from NVM

Receive PHT2 and AC from NVM

Validate AC and PHT2

Checks if RSA is Enabled, 

If Yes,

If Success, Use PHT1 in 
GVAR for SecureBoot

NVM
(SD Card)

First PHT Transfer (Unauth.) - PHT1

Second PHT Transfer (Auth.) - PHT2



Vulnerability: Redundant PHT Transfer

❑ Key Observation: FSBL authenticates PHT2, but uses PHT1 for secure boot

❑ Flaw: FSBL uses the unauthenticated PHT1 for secure boot.

❑ Attack Idea: 
❑ Present Tampered PHT1 to device
❑ Present Valid PHT2 to device: PHT2 will be authenticated successfully by device
❑ Flaw: Tampered PHT1 will be used for secure boot
❑ Attack application mounted successfully on target!!



❑ Requirement: Manipulate data coming from SD card (PHT1 ≠ PHT2)

❑ Idea: Multiplexer to switch between two SD cards (SD Card 1 and SD Card 2)

❑ Attack Steps:
❑ SD Card 1 sends tampered PHT1
❑ Switch!!!
❑ SD Card 2 sends valid PHT2
❑ Device boots based on tampered PHT1
❑ Attack application loaded from SD Card 2

❑ Caveat: Switch should be done oblivious to the target Zynq device

❑ Solution: We designed an SD card switcher board

RSA Attack using SD card Multiplexer
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SD Card Switcher Board:

Manual 
Switch for 

SD card swap

SD Card 1

SD Card 2

Swap using 
GPIO Trigger



Attack Setup:
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Attack Setup:

Boot Image Header

Partition Header Table
(PHT)

First Stage Boot Loader
(FSBL)

Target Bitstream

PHT Authenticate 
Certificate

FSBL Authenticate 
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Bitstream Authenticate 
Certificate

Attack Application

Boot Image Header

Partition Header Table
(PHT)

First Stage Boot Loader
(FSBL)

Target Bitstream

PHT Authenticate 
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FSBL Authenticate 
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Bitstream Authenticate 
Certificate

Attack Application

Tampered PHT
(Corresponding to Attack 

Application)

SD Card 1 SD Card 2

Original PHT

- Unencrypted

- Encrypted

- Tampered PHT



Attack (Expected):

Save PHT1 in GVAR

FSBL 
(Zynq)
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Queries for PHT2 with AC from SD2

Receive valid PHT2 and AC from SD2
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Attack (Observed):

Save PHT1 in GVAR

FSBL 
(Zynq)

Queries for the PHT from SD1

Receive Tampered PHT as PHT1 from SD1

Queries for PHT2 with AC from SD2

No Response!!!

Checks if RSA is Enabled, 
If Yes,

SD Card
Switcher

SD Card 1
Initialize SD Card

SD Card 2

SWITCH From SD1 to SD2

Problem: SD Card 2 not able to respond!!!

As device is trying to address SD Card 1…



Attack:

Save PHT1 in GVAR

FSBL 
(Zynq)

Queries for the PHT from SD1

Receive Tampered PHT as PHT1 from SD1

Queries for PHT2 with AC from SD2

Receive valid PHT2 and AC from SD2

Validate AC and PHT2

Checks if RSA is Enabled, 
If Yes,

If Success, Use PHT1 in 
GVAR for SecureBoot

SD Card
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SD Card 1
Initialize SD Card

SD Card 2
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Initialize SD Card

Single call to Init. SD Card



The Attack, practicality and CVE
❑ Attack requires to make a very minor modification in the FSBL: To Initialize the SD Card 2

❑ Very close to practical, but not yet fully practical
❑ Modification in FSBL not related to the identified vulnerability !!!

❑ However, our attack concretely demonstrates presence of flaw in FSBL.
❑ Xilinx confirmed its a serious issue and patched the vulnerability
❑ They also published a CVE 2022/23822 (Dated April 27, 2024)

❑ For real-world practical attack, we need to design specialized hardware (using ASIC/FPGA)

Save PHT1 in GVAR

FSBL 
(Zynq)

Queries for the PHT from SD1

Receive Tampered PHT as PHT1 from SD1

Validate AC and PHT2

Checks if RSA is Enabled, 
If Yes,

If Success, Use PHT1 in 
GVAR for SecureBoot

SD Card
Switcher

SD Card 1
Initialize SD Card

SD Card 2

SWITCH From SD1 to SD2

FPGA/ASIC

(Data Manipulation)



Software Patch by Xilinx

Patch Note: 
This patch fixes the secure 
vulnerability of parition 
header(PH)
authentication, in existing code 
the actual buffer used and
authenticated are different, this 
patch fixes the issue by
considering the actual used 
buffer of partition header while
calculating the SHA2 digest

March 25, 2022
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❑ The starbleed attack introduced by Ender et.al on a standalone FPGA works in the following manner:

Introduction to Starbleed on Zynq

Configuration Interface
(JTAG, SelectMAP, SPI, BPI)

7-Series FPGA

WBSTAR

Step 2: Readback 
WBSTAR register

Decrypted 
word

PL
PS

(Attack App)
PCAP

Zynq-7000 SoC

Securely Booted Zynq
(Mandatory)
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Starbleed Bitstream Creation: Tool

• The tool works by adding faults 
in the required places (done 
manually).

• Removing extra superfluous code 
(makes the attack much faster)



Starbleed Bitstream Creation: Tool



Building Secure Boot Image from Victim Boot Image



Building Attack Application:

❑ Main Tasks:
❑ Task 1: Fetch starbleed bitstreams from DDR memory and push them to PL through PCAP interface.
❑ Task 2: Perform readback of the WBSTAR register through the PCAP interface.

❑ We utilized Xilinx Software Development Kit (XSDK) from Xilinx to develop the attack application running on 
the PS.

❑ We are able to successfully use the PCAP interface to configure PL with valid bitstreams.
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No Readback

❑ Readback through PCAP is only possible when the PL is fully configured with a valid bitstream.

❑ So, we attempted to use the JTAG interface to perform readback.

❑ We were able to read the correct decrypted word in the WBSTAR register through JTAG interface.

JTAG
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❑ JTAG is an external interface which might not be exposed on a deployed device.

❑ There is a fuse control bit that can permanently disable JTAG: XSK_EFUSEPK_DISABLE_JTAG_CHAIN

❑ Can we perform the attack using just the PCAP interface (without relying on external interface)?

❑ We identified a “hack” to perform the starbleed attack only using the PCAP interface.

Can we rely on JTAG for Starbleed Attack
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❑ Limitation: PCAP readback possible only when PL is properly configured (PL Done High)

❑ Attack Steps:
Step-1: We push a valid bitstream (encrypted bitstream in victim image) and fully configure the PL (PL DONE high)
Step-2: Without initializing the PL, we send in the Starbleed bitstream (not recommended)

   -  We then observe an HMAC error and the DONE LED is still high (FPGA still fully configured)
Step-3: We read the WBSTAR register through PCAP interface - We get the decrypted codeword!!!
Step-4: PCAP goes into unknown state – unresponsive - requires a POR reset

Init. PL DONE

PL
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❑ Starbleed bitstreams need to be created adaptively (based on knowledge of previously retrieved words)

❑ Since we have control of attack application, we use UART interface to communicate with target

❑ New bitstreams are fed to the Zynq device through the UART interface (then used by PS for the attack)

❑ We have an Arduino based relay to perform automatic POR reset of the target

Automating Starbleed Attack (using PCAP)



❑ Introduction 
❑ RSA Authentication Attack on Zynq-7000

❑ Background: Attack Model, Secure Boot and RSA Authentication
❑ Vulnerability in FSBL
❑ Attack Implementation: Using SD Card Switcher Board 

❑ Starbleed on Zynq
❑ Introduction and Working
❑ Experimental Results

❑ Analyzing SD Card Data Transfer
❑ BootROM

❑ Possible BootROM Vulnerabilities
❑ PHT Transfer Analysis
❑ BootROM Data Transfer Analysis

❑ Conclusion and Future Works

Outline



❑ We are able to retrieve a single decrypted bitstream word in approx. 1 second.

❑ An encrypted bitstream of size 3.85 MB can be retrieved in 46 days.

❑ Attacker needs access to the target device for this duration.

❑ Maximum time spent in POR reset (target device goes through secure boot for every bitstream word)

Starbleed on Zynq: Experimental Results



❑ Faster bitstream recovery is possible with dedicated PCB and faster relay

❑ Can have multiple target devices to speed-up the attack as well.

❑ Main Bottleneck: POR reset requirement ( when using secure boot )

❑ Can we perform attack without requiring POR reset?

❑ Once we recover the HMAC key, we can create authenticated starbleed bitstreams (No HMAC error)

❑ PCAP could potentially be retained in a working state

❑ Complete bitstream recovery might be possible without POR reset for every recovered word

❑ Some sound strategies may not work because of some unknown reason as well.

Optimizing Starbleed Attack on Zynq
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SD Card Interface: Background
❑ 9 wire interface:

❑ CMD (Command)
❑ CLK (Clock)
❑ DAT0-DAT3 (4 data lines)

❑ Commands and Response are exchanged over CMD line
❑ In the form of Packets

❑ SD card contains a few information registers:
❑ Control and Status of SD Card interface

❑ Reading/Writing in blocks of 512 bytes

❑ Important commands for read:
❑ CMD17 - To read single block
❑ CMD18 - To read multiple blocks
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SD Card Interface
CMD17:

CMD18:

Idea: 
❑ Monitor the number of CMD17, CMD18 calls
❑ Gives us information about data blocks 
read by BootROM/FSBL over SD interface…

Use Logic Analyzer to analyze SD Card 
Interface



❑ DS Logic Plus Analyzer:
❑ 400 MHz (16 channels)
❑ SDIO protocol decoder

❑ Analysis of the following signals:
❑ CMD
❑ CLK
❑ DAT3 (Can be any other data line)

Logic Analyzer for SD Card Interface 
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Possible BootROM Vulnerabilities
❑ What about BootROM?

❑ RSA Authentication, Decryption of FSBL (SD Card)
❑ Any vulnerabilities in BootROM?

❑ Challenges:
❑ BootROM code is not available (hard-coded on chip)
❑ BootROM code cannot be changed

❑ In this work:
❑ Black Box Vulnerability analysis of BootROM
❑ Updates on our previous attack on FSBL

❑ Probe the SD Card Interface between SoC and 
SD Card



Analysis of SD Card Interface during Bootup

Read BIH
Boot Image Header

Read FSBL 
(Certificate)

Read PHT 
(Certificate)

Read Bitstream 
(Certificate)

Read Application 
(Certificate)

BootROM

FSBL



Full Boot up:

CMD

CLK

DAT3

❑ How to differentiate between BootROM transfers and FSBL transfers?
❑ Observation: FSBL is controllable software
❑ Idea: Insert varying delays within the FSBL software and observe how the transfers are perturbed.

❑ Insert delay just after start of FSBL
❑ Insert delay after PHT transfer
❑ Insert delays after bitstream transfer



Full Boot up:

InitSD
(BootROM)

Retrieval 
of FSBL

(BootROM)

InitSD 
Interface
And PHT
Retrieval

(FSBL)

Retrieval of 
Bitstream

(FSBL)

Retrieval of 
SW Application

(FSBL)

CMD

CLK

DAT3

BootROM Execution FSBL Execution



Full Boot up:

CMD
CLK
DAT3

CMD18 from Zynq Device (Host)
(Read Multiple Blocks at Address: 0x54e56)

Response from SD Card
(Acknowledgement)
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PHT Transfer by FSBL

InitSD 
Interface

Retrieval of 
PHT1

(2 blocks)

CMD
CLK

DAT3

FSBL Execution

❑ We know there are two PHT transfers (PHT1 and PHT2)

❑ To identify PHT1: Put an infinite while loop after PHT1



PHT Transfer by FSBL
❑ We know there are two PHT transfers (PHT1 and PHT2)

❑ To identify PHT2: Put an infinite while loop after PHT2

❑ PHT1 transfer: 445 msecs (from first clock edge on CMD line)
❑ PHT2 transfer: 448.5 msecs (from first clock edge on CMD line)

InitSD 
Interface

Retrieval of 
PHT1

(2 blocks)

Retrieval of 
PHT2 with AC

(7 blocks)

CMD
CLK

DAT3

FSBL Execution 3 msecs (Time to Switch)
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Analyzing BootROM Behaviour
❑ Area of Interest: data blocks transferred during FSBL authentication

❑ We consider three cases:
❑ Non-secure Boot (Nsec)
❑ Secure with only encryption (Sec_Encrypt)
❑ Secure with both encryption and authentication (Sec_Auth_Encrypt) 



BootROM Behaviour: Nsec Image 
❑ Read unencrypted FSBL
❑ 114.5 KB = 225 Blocks



BootROM Behaviour: Nsec Image 
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BootROM Execution FSBL Execution

Retrieval of Unencrypted FSBL
(225 Blocks)
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BootROM Behaviour: Sec_Encrypt Image 
❑ Read encrypted FSBL
❑ 115.5 KB = 227 Blocks



BootROM Behaviour: Sec_Encrypt Image 
❑ Read encrypted FSBL
❑ 115.5 KB = 227 Blocks

BootROM Execution FSBL Execution

Retrieval of Encrypted FSBL
(227 Blocks)
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BootROM Behaviour: Sec_Auth_Encrypt Image 
❑ Read encrypted FSBL + Certificate
❑ 116.8 KB = 230 Blocks

❑



BootROM Behaviour: Sec_Auth_Encrypt Image 
❑ Read encrypted FSBL + Certificate
❑ 116.8 KB = 230 Blocks

BootROM Execution FSBL Execution

Retrieval of Encrypted FSBL + AC
(230 Blocks)

CMD
CLK
DAT3

❑



BootROM Behaviour: Sec_Auth_Encrypt Image 
❑ Read encrypted FSBL + Certificate
❑ 116.8 KB = 230 Blocks

BootROM Execution FSBL Execution

Retrieval of Encrypted FSBL + AC
(230 Blocks)

CMD
CLK
DAT3

❑ Inference: There are no duplicate data transfers of the FSBL data duing BootROM execution… 



Conclusion:
❑ We have identified a critical security flaw in the Zynq-7000 FSBL software, due to mishandling of the PHT 

data.

❑ We experimentally validated exploitation of the flaw, using an SD card switcher board.

❑ A very minor modification to the FSBL is required to demonstrate successful attack with existing 
hardware.

❑ For real world attack, we need a specialized hardware between the target and the SD card switcher 
board.

❑ Xilinx/AMD has acknowledged the presence of the critical flaw to bypass RSA Authentication.

❑ A software patch for the FSBL is provided Xilinx to remove the vulnerability.

❑ But all unpatched devices in the wild face recovery of unencrypted bitstream and application 
files.

❑ We performed the first vulnerability analysis of the BootROM software of Zynq-7000 SoC

❑ We used a logic analyzer to probe the SD card interface during FSBL and BootROM execution 

❑ BootROM Analysis: showed that there is no duplicate transfer of FSBL during BootROM execution



Future Works:
❑ After patching the PHT authentication vulnerability, are more attacks still possible??

❑ Fault Vulnerability Analysis of the FSBL, BootROM



Thank you!!!
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